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Introduction to statistics

INTRODUCTION

The first step toward understanding statistics is 
to have a firm grasp on graphing and sampling. 
If one can properly differentiate between the need 
for a bar graph (when comparing means), versus a 
best-fit line graph (when looking for a relationship 
between variables), versus having no graph but a 
tally table instead, one is on their way to under-
standing statistics. Statistics is using mathematical 
formulas, definitions, and computers to predict, 
define, and tell exactly how one treatment is differ-
ent from another (Magnusson and Mourao 2004). 
Statistical inference uses standardized criteria for 
decision making to help ensure that decisions are 
not swayed by personal opinion or political pres-
sure (Sinclair et al. 2006).

Statistics may not be easy for beginners 
(Magnusson and Mourao 2004). One problem is 
that many statistics courses are taught by math-
ematicians and their job is to emphasize theory. 
Things may get too deep, too fast, and never cover 
examples in one’s field. Another problem is that 
practitioners, the biologists, chemists, and physi-
cists who advise you, may have years of experience 
and tricks using the techniques they need, but their 
theory is absent and their language is inconsis-
tent. How can you expect to learn anything from 
anybody?

A good place to start may be the first page of each 
chapter of a statistics book. With practice, one can 
peel through to the next layer with more complex 
graphs, experiments, and examples. The perfect 
class, book, or teacher will never emerge for some-
thing so personal. Instead, there are books at the 
library that must be read. Once the basic concepts 
are learned, the results section of science journals 

and experimental design books should be read to 
find specific examples that are of interest. Even if one 
has taken a statistics course, experimental design 
may not have been addressed as it is in this chapter.

THE NULL HYPOTHESIS

For every statistical test there is a null hypothesis. 
“Null” means no, nothing, none, nada, zip, or zilch. 
Depending on the type of experiment conducted, a 
null hypothesis means there is (Table 13.1):

 ● no difference between means being compared 
(t-test and ANOVA),

 ● no difference between observed frequencies 
and those expected by chance (chi-square),

 ● no relationship between two variables (correla-
tion and regression).

Corresponding to each of these, the alternative 
hypothesis is the opposite:

 ● There is a significant difference between means 
being compared.

 ● There is a significant difference between 
observed frequencies and those expected by 
chance.

 ● There is a significant relationship between two 
variables.

THE PROBLEMS WITH NULL 
HYPOTHESES

Statistical tests are effective at ruling out null 
hypotheses, for example, “animals do not move.” 
The trouble for most students is that the null 
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hypothesis is the opposite of what we would 
expect. Additionally, the alternative hypothesis is 
what we are supposed to infer if we reject the null, 
but this is only inference. There may be more than 
one alternative hypothesis. Which one are we sup-
posed to choose?

P value

When testing a null hypothesis, the result of the 
statistical test is a P value. It shows whether the 
null should be rejected. P has a complex definition, 
but beginners can think of it as the probability that 
the null is true.

 ● if P < 0.05, reject it. The data supports the alter-
native hypothesis and one can conclude the 
means are significantly different.

 ● if P > 0.05, fail to reject. There is not enough 
support for the alternative hypothesis.

When P < 0.05, beginners could think of the mean-
ing as less than a 5% chance that the null is true. A 
more accurate way to express it is, “a difference as 
great as what we found between treatments would 
be expected less than 5 out of 100 times” (Gotelli 
and Ellison 2014).

WHY DO WE USE P = 0.05 AS THE 
CUTOFF POINT?

This cutoff seems stringent if we reject only when 
we would expect it less than 5% of the time. If you 
used this rule in your everyday life, you would not 
take an umbrella unless the forecast for rain were 
at least 95% (Gotelli and Ellison 2014). It means 
that the evidence must be exceedingly strong for 
us to reject the null hypothesis. The jury does not 
issue a guilty verdict unless there is more than 94% 

surety. We would certainly take precautions if we 
knew there was a 94% chance of a tornado. The rea-
son the standard is so high is because:

 ● the convention is based on probability, not cer-
tainty. We do not measure whole populations, 
only samples. The estimate based on sampling 
is sometimes wrong and noisy. We need to be 
conservative, which means a high standard.

 ● two types of errors may occur as illustrated 
in Table 13.2. In a type I (alpha error) the null 
is rejected when it should not be. In a type II 
(beta error) we fail to reject when we should 
have rejected.

 ● A type I error is the worse type because it is a 
false positive. The researcher has rejected the 
null hypothesis when it was really true. More 
significant differences were declared than were 
actually there. It is like convicting an innocent 
person for a crime he or she did not commit.

 ● The problem is, the higher P you choose as 
your critical value, the more you increase your 
chance of making a type I error.

 ● If you use a P value too low, you increase 
the chance of making a type II error. You 
let a guilty person go scot-free, perhaps to 
commit another crime.

Experience has shown that P = 0.05 is usually the 
right balance between type I and II errors for most 
situations as long as at least 30 replicates in each 
treatment were taken.

The extent that a statistical test minimizes type 
II errors is called power. The power of the test 
increases with sample size. For almost all tests, 
there is sufficient power when there are at least 30 
replicates in each treatment. In some situations, 
especially epidemiology, avoidance of type II may 
be more important. Ask your research adviser.

Table 13.1 Most commonly used statistical tests and their null hypotheses

t-Test ANOVA Chi-squared

What is being 
compared

Two means More than two means Two or more 
frequencies

Null hypothesis Ho: µ1 = µ2  Ho: µ1 = µ2 = µ3 freq1 = freq2

Type of variable Continuous Continuous Categorical
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AN OBSESSION WITH REJECTION–
STATISTICAL VERSUS SCIENTIFIC 
SIGNIFICANCE

A preoccupation with null rejection can over-
shadow more important concerns (Sinclair 2006). 
A data set with a small number of replicates, or 
a faulty null hypothesis in the first place, should 
always be treated with caution or suspicion. 
Statistical significance does not necessarily imply 
scientific significance.

MEANS COMPARISONS

A t-test is used to determine if there is a statistical 
difference between two means. Computer software 
from R, Excel, Instat, or others can be used to cal-
culate t. A difference exists between independent 
and paired t-tests. Paired t-tests have more power to 
detect change and should be used whenever appro-
priate, but most comparisons are independent and 
not paired. Paired t-tests can be used when pairs 
of sampling units are correlated. In other words, 
a plot in a forest with a large value the first year is 
likely to have a large value the second year, which 
means they are correlated. Other examples include 
the right side of bilateral animals compared to the 
left, or comparisons between identical twins. If you 
are not sure whether a t-test should be paired, it 

probably should not. Proceed as if it should not. A 
t-test can also be either one-tailed or two. If you are 
not sure, assume it is two-tailed.

PARAMETRIC VERSUS NON-
PARAMETRIC TESTS

The most commonly used and most accurate sta-
tistical tests are based on specified distributions in 
their histograms (especially normal or Poisson). 
When they are based on these known distribu-
tions they are considered parametric tests. These 
include t-test, chi-square, analysis of variance,  
and others. They have certain rules (assumptions) 
that must be met, otherwise the results are invalid. 
The assumptions of a t-test are:

 1. data are normally distributed: In other words, 
if a frequency histogram was drawn for each 
treatment, each histogram would form a bell-
shaped curve (Figure 13.1). This will almost 
always be true if there is a sample size of 30 
replicates for each treatment because of the 
Central Limit Theorem.

 2. the variance (or SD) of one treatment is 
approximately equal to the variance (or 
SD) of the other treatment: This is the more 
important of the first two assumptions. 

USING CERTAIN WORDS

 ● Be careful about using “prove.” Just because P < 0.05 and you reject the null, it does not 
prove the null hypothesis is false.

 ● Be careful about using “accept the null hypothesis.” It is equivalent to “proving.” You may 
“reject” the null or “fail to reject,” but you may not “accept the null” unless you do a power 
analysis to precisely calculate the probability of a type II error.

Table 13.2 Delineation of type I and II errors

Analysis indicated that we 
should fail to reject H0

Analysis indicated that we 
should fail to reject H0

H0 true = in reality there is no 
difference µ1 = µ2

Our analysis is correct  Type I error (alpha)

H0 false = in reality there is a 
difference µ1 ≠ µ2

Type II error (beta) Our analysis is correct
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Variance refers to how much variation there is 
among the samples in one treatment.

 3. observations are independent: One replicate 
does not in any way influence the value in 
another replicate and there is true replication, 
not pseudoreplication.

WHICH IS THE BEST 
CHOICE, PARAMETRIC OR 
NON-PARAMETRIC?

Despite the restrictions, you should always try to 
use parametric tests if possible. Non-parametric 
should be used only if a correction or transforma-
tion does not meet the assumptions. Parametric 
tests are far more accurate and do the most to 
reduce both type I and II errors If you use a non-
parametric test you should justify your use of it, 
otherwise we may think poorly of your choice of 
statistical test.

WHAT IF THE FIRST TWO 
ASSUMPTIONS OF THE T-TEST ARE 
NOT MET?

There are two choices.

 1. Some statistical packages make corrections for 
unequal variances such as using the Welch cor-
rection within Instat, but you have to say yes 
for this choice when prompted. Most statistical 
software does not provide the option.

 2. Each number in the data sets can be trans-
formed by ln x, sqr root of x, or ln (x + 0.1). This 
is like changing units from miles to km. The 
natural log transformation is the most com-
mon and has the particular effect of making 
the standard deviations relatively smaller and 
therefore more equal. This seems like a magic 

trick, but it is as valid as changing units from 
miles to km. Note that when dealing with per-
centages, the first two assumptions are almost 
always violated. The best transformation to use 
with percentages is to take the arcsin square 
root of each of the data points in each treat-
ment. Although you may transform the data 
for analysis, you should report the results in 
the original units when making graphs or 
tables.

 3. If the problem is not corrected when the 
test is run again on the transformed data, 
the researcher should use a non-parametric 
test. These have less stringent assumptions. 
Parametric means that the probability fits a 
specific distribution, almost always implying 
a bell-shaped (normal) curve. Non-parametric 
tests are usually based on ranks, a far less accu-
rate way to assess differences. The non-para-
metric alternative for comparing two means is 
a Wilcoxon signed rank test or Mann-Whitney 
U test. The alternative for comparing more 
than two means is a Mann-Whitney U test or 
Kruskal-Wallis.

WHAT IF THE RESEARCHER IS 
COMPARING MORE THAN TWO 
MEANS?

An analysis of variance (ANOVA) using an F test 
is employed when comparing the means of more 
than two treatments (Figure 13.2). The basis of an 
ANOVA is different than of a t-test. In an F test, 
F is the ratio of the variance among groups over 
the variance within. The idea is that if the vari-
ance among is much greater than within, the treat-
ments must be significantly different. This makes 
intuitive sense and is why this is called analysis of 
variance.

To do this in practice, the sum of the squared 
deviations among treatments ( )∑ −x x1

2 is divided 
by the sum of the squared deviations within treat-
ments ( )∑ −x x1

2to produce an F value. This F value 
is checked against a table of values to determine P. 
Simple.

The computer output for an ANOVA is in a 
format as in Table 13.3 (Dytham 2011). The busi-
ness end of the table, of course, is the P value. In 
this case P > 0.05, which indicates there is no sig-
nificant difference among treatment means. We 

Figure 13.1 A bell-shaped curve in a frequency 
histogram showing a normal (Gaussian) curve. 
Each bar represents a range of values, with most 
values grouped tightly around the mean.
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HOW TO TEST THE T-TEST ASSUMPTIONS

ASSUMPTION 1 (NORMALITY ASSUMPTION)

 1. Some statistics packages check this automatically and will not let you proceed if the assump-
tion has been violated. Some of the other statistical packages test it on request or provide 
results automatically with the final P value, but they do not stop you from proceeding to the 
end.

 2. If you have 30 samples or more, assume the assumption is met.
 3. Seat of the pants rule if you do not know another way: when there are less than 30 replicates 

per treatment, use a number line to examine the mean and individual values for each treat-
ment. If the individual values are evenly distributed around the mean, assume the distribu-
tion is normal for that treatment.

ASSUMPTION 2 (EQUAL VARIANCE ASSUMPTION)

 1. Some statistics packages check this automatically. In other software, check the results of 
the Levene test or other computerized test on the printout for results of the equal variance 
assumption.

Figure 13.2 Methane production by type of farm animal (n = 5) when fed standard diets adminis-
tered for 6 weeks.

Table 13.3 An example of a standard ANOVA table produced in a standard computer output

Levene Test for Homogeneity of Variances

Statistic df1 df2 2-tail Sig.
0.7616 1 8 0.408

Analysis of Variance

Source D.F. Sum of squares Mean Squares F Ratio P
Between 1 16.3840 16.3840 15.3624 0.089

Within 8 8.5320 8.5320 1.0665

Total 9 24.9160
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fail to reject the null hypothesis. Note that when 
we refer to differences between two means we use 
“between.” When we refer to differences among 
more than two means we use “among.” We must 
check the assumptions of ANOVA just as we did 
in the t-test, and the assumptions are the same. 
For some statistics software, the assumptions are 
checked automatically. The computer output will 
now include something like Table 13.3 with a 
Levene’s test:

The “2-tail Sig.” value is the P value for the 
Levene’s test. It tells us there is no significant dif-
ference in the variances among treatments, thus 
we have met the equal variance assumption. This 
is good and we can proceed to validly accept the 
information in the analysis of variance table. If the 
P value for the Levene’s test were less than 0.05, we 
would have to take corrective action such as trans-
forming the data. It would not be valid for us to 
accept the rest of the results in the analysis of vari-
ance table.

POST HOC TESTS TO COMPARE 
PAIRS OF MEANS

If the P value for our ANOVA results tells us that 
some treatment means are different from others, 
how do we know which mean is different from 
which when we have more than two means? To 
determine differences between means we need a 
post hoc test. Post hoc = after the fact. This is also 
sometimes called a posteriori = after the fact. This 
is also called a means-comparison test. These 
compare every mean to every other mean and pro-
vide P values for every pairwise comparison.

The one thing that is not valid is to complete 
multiple t-tests to compare every mean to every 
other mean. This compounds the probabilities and 
renders the tests invalid. In other words, we are no 

longer testing our null at the 0.05 level. If we con-
duct two t-tests, we are now testing the null at the 
0.05 × 0.05 = 0.025 level. If we use three t-tests, it is 
at the 0.05 × 0.05 × 0.05 level and so forth. Reducing 
our P standard will drive up our chance of making 
a type II error.

There are several post hoc tests available, Least 
Significant Difference (LSD), Student Newman 
Keuls (SNK), Sheffe, Tukey’s, and Duncan Multiple 
Range. Mathematical research shows that the best 
one to use is Tukey’s. Here is why: LSD uses mul-
tiple t-tests, which we just reported was invalid; 
it produces a result that is too conservative = too 
many type IIs. Duncan’s Multiple Range is too 
liberal with too many type I = worst kind of error. 
Thus, Duncan’s Multiple Range test should never 
be used. It means too many innocent people in jail. 
Tukey’s has fewest type II or type I errors – use this.

The computer output with Levene’s test, the 
ANOVA table, and the post hoc test is in Table 13.4.

According to our Tukey’s test (Table 13.4) there 
are no significant differences between any of our 
pairwise comparisons among means because none 
of the P values were less than 0.05. Actually, we 
would probably not have run the post hoc tests on 
this analysis in the first place because we did not 
find a significant P value when the overall ANOVA 
was run.

HOW DO I SIGNIFY PAIRWISE 
SIGNIFICANT DIFFERENCES ON MY 
GRAPH?

Look again at the figure in our methane example. 
There is a horizontal line over all three bars. The 
conventional rule is that this horizontal line is 
placed over the top of all treatments that are not 
significantly different. In this case the original 
P = 0.089. Because it was not less than 0.05, there 

 2. Seat of the pants rule if you do not know another way: calculate the variance or standard 
deviation for each treatment. (Excel can do this.) If the standard deviations of the treatments 
are roughly equal (within 30%), consider the assumption to be met.

ASSUMPTION 3 (INDEPENDENCE ASSUMPTION)

There is no computer program that can tell you this. Use common sense and judgment. Was 
there true replication, or was it pseudoreplicated? Do the samples in one treatment or replicate 
influence the others? If this assumption is not met, the analysis must be abandoned. There is no 
choice.
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were no significant differences. A line can be drawn 
over all three treatments.

Consider an example when there is a signifi-
cant difference among the means (Figure 13.4). 
The mean for horse is significantly different from 
the means for pig and cow, but pig and cow are not 
significantly different from one another. Notice 
that the graph has a line over the treatments that 
are not significantly different. Notice that to make 
this convention work, the means must be placed in 
order from lowest to highest, or highest to lowest 
on the graph, thus the order of the bars has been 
rearranged in this example.

The convention of placing a line above the treat-
ments that are not significantly different can be 
used for some very sophisticated differences. In 
Figure 13.3, the lines tell us the mean for horse is 
significantly different from every other mean. The 
mean for snake is different from every other mean. 
Cow and pig are not different from each other. Pig, 
hamster, and lion are not different from each other. 
Remember, this convention will only work when 
you order your means from lowest to highest or 
highest to lowest. Altogether there are 11 signifi-
cant pairwise differences depicted in Figure 13.3. 
Can you name them all?

TABULAR COMPARISONS: 
COMPARING FREQUENCIES 
THROUGH CHI-SQUARE TEST

It is appropriate to use a chi-square test when:

 ● frequencies are being compared, not means.
 ● categorical data are being used, not continuous 

data.
 ● the null is that the observed and expected 

frequencies are not different.

Frequencies are not means. They are the number 
of each organism or object and can only occur as 
whole numbers, not decimals as is possible for a 
mean. It is how many times a coin lands heads or 
tails, how many individual beetles reproduce or 
not, or whether organisms are present or not. It is 
the abundance of something, a unitless number, 
the number of times something occurs. You keep 
a tally when assessing frequency.

EXAMPLE HYPOTHESES TESTED IN 
CHI-SQUARE

 ● Is the observed and expected frequency the 
same?

 ● Are phenotypic ratios in a monohybrid cross 
the same as the expected 3:1 frequency?

 ● Are sex ratios the same as what we would 
expect?

Comparisons among frequencies are useful in 
genetics and some chemistry research, but with 
few exceptions they are rarely appropriate for 
answering field biology questions (Magnusson and 
Mourao 2004). Too many individuals or plots have 
to be sampled to record something like presence 

Table 13.4 Example of standard ANOVA table with output for Levene test and post hoc test

Levene Test for Homogeneity of Variances

Statistic df1 df2 2-tail Sig.
0.7616 1 8 0.408

Analysis of Variance

Source D.F. Sum of 
squares

Mean 
Squares

F Ratio P

Between 1 16.3840 16.3840 15.3624 0.089

Within 8 8.5320 8.5320 1.0665

Total 9 24.9160

Tukey-Kramer Pairwise Comparisons 2-tail Sig.

horse pig cow

horse 0.00

pig 0.072 0.00

cow 0.099 0.124 0.00
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and absence. It ends up being too expensive and 
time consuming to visit 1,000 Chestnut trees and 
determine whether they do or do not have repro-
ductive structures. A thousand test tubes, however, 
may be reasonable.

Ecologists often find means and the varia-
tion among samples to be more appropriate and 
more enlightening for small sample sizes. Chi-
squared tests are very sensitive. They almost 
always show statistical significance to the point 
where the results become meaningless. If you are 
doing an ecological project and you find your-
self using frequencies, see if you can turn your 
question into something using a mean. This is 
almost always possible. Leave the chi-squared 
tests for the laboratory researchers with many 
more replicates.

CORRELATION AND REGRESSION

For both correlation and regression we usually 
draw a graph with two axes, and plot points. This 
is called a scatter plot (Figure 13.4) or if it has a line 
with it, a line graph. If the two variables are cor-
related, the data set will slope either one way or the 
other, positive correlation or negative correlation.

 ● In a graph plotting drum volume versus peanut 
growth, we interpret a positive correlation as 
“the greater the volume, the greater the peanut 
growth.”

 ● We interpret a negative correlation as “the less 
the volume, the greater the peanut growth” 
or “the more the peanut growth, the less the 
volume.”

Figure 13.4 Peanut growth versus drum volume showing negative correlation.

Figure 13.3 Methane production by type of farm animal (n = 5) when fed standard diets adminis-
tered for 6 weeks. Lines above bars indicate no significant difference in pairwise comparisons.
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HOW ARE REGRESSION AND 
CORRELATION DIFFERENT?

Correlation is plotting two variables and look-
ing for a pattern. The researcher did not specify 
which variable is on the x axis and which is on 
the y. There is no predictor and response variable, 
no cause and effect. Regression does specify cause 
(independent (x) variable) and effect (dependent 
(y) variable) because the researcher knows which 
is causing which.

A best-fit line can be added to correlation or 
regression. This is done to minimize the aver-
age distance of the points from the line and can 
be done mathematically or by eyeball. For linear 
regression, the squared vertical distances from 
a line are generally minimized (Magnusson and 
Mourao 2004). For correlation, the horizontal 
and vertical distance of each point is minimized 
and this is called least-squares (also referred 
to as Model II regression) (Gotelli and Ellison 
2014).

More advanced students may be interested to 
know that least-squares regression is logically 
and mathematically the very same as ANOVA. 
The distances to the best-fit line are “residu-
als.” The variation about the line is the resid-
ual variation not explained by our model (the 
line). A plot of residuals after an ANOVA can 
be enlightening to establish how much variation 
exists within or between treatments. It is also 
used to calculate r2.

SOME OTHER DIFFERENCES 
BETWEEN REGRESSION AND 
CORRELATION

In regression one can draw a line in the form 
y = mx + b to predict y values based on x. A predic-
tion is not appropriate in correlation. In regression 
one can obtain a P value and a significance test. It 
tests the null that one variable does not depend on 

the other. In other words, P is the probability that 
the best-fit line has a slope of zero. In correlation 
this is not appropriate.

THE STRENGTH OF THE 
CORRELATION CAN BE MEASURED

Strength is signified by r which stands for the 
Pearson’s product-moment correlation. It varies 
from −1 (negative) to +1 (positive), with 0 indicat-
ing no correlation at all. It represents the percent 
variation in one variable explained by the other. In 
other words, it represents consistency in the data. 
We can ask, is there a high degree of error, or do 
the data points make a straight line? We can also 
calculate a P value that tests the H0: one variable 
is not related with the other. It tells us something 
about the strength of relationship but not the slope.

WORDS OF CAUTION ABOUT 
CORRELATION

Pearson’s correlation assumes that both variables 
are normally distributed. This assumption is almost 
never heeded. Correlations are frequently used, but 
do not report their statistical assumptions. Even 
if a correlation exists, it does not imply cause and 
effect (one variable causes the other). Consider “the 
higher the drum volume, the greater the peanut 
growth.” All a correlation can do is establish a pos-
sible pattern but nothing else (Table 13.5).
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